

United States Nuclear Regulatory Commission Protecting People and the Environment

Ensuring Spent Fuel Pool Safety

Michael Weber Deputy Executive Director for Operations U.S. Nuclear Regulatory Commission

American Nuclear Society Meeting June 28, 2011

Insights from Fukushima

- Nuclear emergency at Fukushima-Daiichi
 - 3 nuclear reactors
 - 4 reactor spent fuel pools
 - 1 common spent fuel pool

U.S. Spent Fuel Pools

- Spent fuel rods stored in spent fuel pools (SFPs) under at least 20 feet of water
- Typically ~1/4 to 1/3 of fuel in reactor replaced with fresh fuel every 18 to 24 months
- Spent fuel stored in pools minimum of 5 years

U.S. SFP Safety

- Spent Fuel Pools (SFP) originally designed for limited storage of spent fuel until removed off-site
- Safety of spent fuel in pools achieved primarily by maintaining water inventory, geometry, and soluble boron (PWRs)
- Drain down can lead to uncovered fuel, heat-up, and the release of radionuclides

Risk of Large Release

- SFP risk is low, due to the low frequency of events that could damage the thick reinforced pool walls
 - Frequency of fuel uncovery; 6E-7 to 2E-6/yr. NUREG-1738
 - Consequences have been assessed to be large due to the potential for heatup of all the fuel in the pool
 - Heatup of the fuel in the pool can lead to "zirconium fire" initiation and propagation
 - Large inventory of Cs-137

SFP Safety and Security

- NRC extensively reexamined pool safety and security after 9-11 attacks
 - Vulnerability to attack
 - Significantly improved analysis of fuel coolability / heatup
 - Assessment of mitigation measures to improve coolability of fuel
 - Improved fuel configuration within the pool achieves substantially greater <u>passive</u> cooling capability by natural convection

SFP Safety and Security

- Additional analyses of a spray system for spent fuel pool cooling
- NRC required spray capability for each site to improve active cooling capability
- Licensees performed site-specific assessments; NRC inspected
- Coolability of fuel within pools has been enhanced by measures identified and assessed as part of post-9/11 research
- Conducting research to confirm understanding and validate analytical modeling

Zirconium Fire Investigations During SFP Loss of Coolant Accident (LOCA)

Zirc Fire Investigations During SFP LOCA – Postmortem

Full Length Single Assembly Ignition Movie

Removing Fuel from Pools

- NRC has considered benefits of removal of fuel from the pool and returning to a low density racking type configuration
- There are competing factors in such a consideration
 - Storage in dry casks must be consistent with certificate
 - Discharging of fuel increases the risk of cask drops and worker doses
 - Removal of fuel will decrease the inventory of Cesium-137
 - Removal of fuel does not appreciably reduce decay heat (most of the decay heat is from recently discharged fuel)
 - Reduction in potential land contamination and economic impacts, if a large release occurred

10

Impact of Removing Assemblies

Reduction of pool thermal heat load

Comparative Consequence Study

- NRC is initiating an updated SFP study
- Estimate the change in accident consequences associated with removing older fuel from the SFP and placing it in dry storage
- Limited scope analysis (e.g., single SFP/operating cycle for low/high density racking)

Comparative Consequence Study for SFP

- Technical approach relies on realistic analysis using expedient but technically-defensible deterministic methods and assumptions.
- Elements of study include
 - Information gathering
 - Seismic and structural assessment
 - Accessibility, decay heat, and radionuclide inventory assessment
 - Accident progression (MELCOR) and offsite consequence analysis (MACCS2)
 - Emergency planning assessment

Conclusions

- No immediate safety concerns based on Fukushima nuclear emergency
- Confirmed the existing safety measures for SFPs
- Examining both the near-term and longterm reviews
- Spent fuel needs to be managed safely and securely